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For the two-level version of the method of boundary integral equations applied to the analysis of 
oscillations of composite thin-shelled coostructious in aa acoustic medium [l-4] the asymptotic analysis 
and simplification of equations in several characteristic excitation bands is carried out within tbe 
framework of the plane problem. The resutts are compared with tbose of a numerical solution of the 
problem. 

UNDER the cylindrical bending conditions, we consider the oscillations of a plate subject to a 
load q(x, t) not connected with the presence of an acoustic medium and being the source of 
vibrations. The time dependence of the external load q and all the other functions to be 
introduced are taken to be of the form eeicu’ the time multiplier being omitted. 

The boundary equation for the acoustic contact pressure can be written as follows [S, 61: 

(1) 

The equation describing the oscillations of the plate has the form [5,9] 

w’v(x)-/Pw (x) = 12 (142) (Z/h)3 [q (Jr) + p (x)1 (2) 

H4 z 12 (14) p wT/(Eh2) 

Here h is the thickness of the plate, v is Poisson’s ratio, E is the longitudinal elasticity modulus 
of the material of the plate, p is the density of the plate, and 1 is the length of the plate (a prime 
designates the derivative with respect to x). 

The boundary conditions (two conditions at each of the points x =0 and x= 2) can be 
arbitrary. 

When using the boundary equation method, in addition to the state of the plate to be 
determined, which is described by Eq. (2) with boundary conditions, one must introduce an 
auxiliary state. The choice of the auxiliary state is, to a large extent, arbitrary and is dictated by 
convenience and the compactness of the solution. The simplest choice is to use Green’s 
function corresponding to a concentrated force applied to an infinite construction [2]. In the 
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case under consideration, such a function must be a solution of the equation (in the dimen- 
sionless form) 

a4 w (4 w E4-P4 w (x. 8 = 6 (X-E) (3) 

In the boundary equation method solutions corresponding to the absence of any sources at 
infinity (satisfying the radiation principle) are usually used as the fundamental solutions. In the 
case in hand, in which the solution for an infinite domain is used just as the fundamental 
solution to construct the solution for a plate of finite dimensions, the radiation principle does 
not have to be fulfilled. Indeed, one has only to verify the inhomogeneous equations in the 
domain with the aid of Green’s function for an infinite plate. The boundary conditions can be 
met by means of additional homogeneous solutions defined by the boundary conditions, the 
total solution being unique and independent of the choice of the first part (i.e. the inhomo- 
geneous solution in the domain). This makes it possible to use the real function 

w (x. 5) = -V4 1.4~~ lsh 01 I x-5 I) + exp (--I-( I x-C; I>1 (4) 

which satisfies the inhomogeneous equation (3), as the fundamental solution. For the problem 
on the oscillations of a plate subject to the cylindrical bending conditions, the boundary 
equations follow directly from Betti’s theorem in [S] 

; [MO (x. -9 49 + P h ~2 I+’ (~9 -9 w (t)l d f = 
0 

Here D is the cylindrical stiffness, the functions M and w correspond to the state of the plate of 
finite dimensions to be determined, and MO and W correspond to the auxiliary state of the 
plate considered as an infinite one. 

On integrating (5) by parts, and using formulae (3) and (4), we obtain the following integral 
representation (resembling the Somigliana formula in elasticity theory) 

w(x)= l*(1-.2)(;)3 ; [q(5)’ 
0 

+ P (4, (91 W (x3 El d t + [w”(5) 
a W(x, El 

a t 

-w”‘(E) w (x, 5) - w’(t) a2 a”:: [) + 
a3w(x, 4) E=1 

+ w (8 a t3 
II 

t=o 

Formula (6) is insufficient to construct the solution of the equation describing the oscill- 
ations of the plate. One needs an integral representation for the rotation angle [5]. The latter is 
easily obtained from (6) by differentiating with respect to the coordinate of the observation 
point x 

w’(x)’ L2(1-v2)(i; ; [q(4)+ 
0 
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+Ptt,o)l 
a2 w (x, 63 a ;p 5, d 5 + [w”(E) ax a f - 

a wtx, 0 
-w”‘(E) ax 

a3 w (x, 8 
- w’(t) ax a [2 + 

*wit) 
a4Kyx, c;) I;=1 

axap “C=o (7) 

Now, letting the observation point x tend to c=O and 4 = 1 in (6) and (7), we obtain four 
boundary equations with eight algebraic unknowns, namely, ~(0, w’(5), w”(s), w”‘(5); 5 = 0; 1; 
and the unknown contact pressure ~(5, 0) 

;w(0)--&w(I)+L w’(0) + 
1 

4P 
-w’(l) + 
4P 

1 
t - w’“(0) - 

1 1 

4P3 
- a3w"'(T) + 

41r3 
-a4w”(I)= 
4Y2 

-‘,a* w(O)+t w(l)-& 
1 

a2 w’(0) -- 
4i.J 

w’( 1) + 

1 
+ - a3 w"'(0) - 

1 1 

dir3 

- w"'(1) t - 
4P3 4P2 

CQ w”(0) = 

3(1-2) 1 3 1 
= - - (;I 

P3 
f kr (8 +p tt, 011 id ct 0-F) + exp f-ir W-E))1 d E 
0 

cc 1 

4 
%W (1) + - ol4 w”‘(1) + 

1 
-- 

41r2 
J-w))(O) + 
4fi 

-(Yzw” 
4E.l 

(1) = 

3 (12) I 3 1 
= - - 

P2 
$9 S k G) +P Q, @I Icos~ &exp (-P 01 d 8 

0 

- $ cQw’(O) + ; w'(I)+; aswCO)- 

cr 1 
-- 

4 
w(l) + -~4w~~~(o)-~ 

4M2 
(Y2 w “(0) - 

_ A- w” (1) = - 
3 (l-V9 2 3 l 

41.r *= 
t;> I k(E)+ 

0 

+p IL O)l Ccoslt Cl-Wxp (---lr W-E))1 d E 
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(Y1 =p, +p3. a2 =fi2+3, a3 =/32 +83, Q4=&+3 

PI =COSP, 02 = 3hi.h 133 = exp(-Cc) 

09 

The system of boundary equations (8) can be closed by the four boundary conditions and the 
integral equation for the contact pressure, which can be obtained by substituting (6) into (1) 

p(x, o)=;(e) 2 PO - 
P i 12 (1-.‘)(;)3 ; ; x 

0 0 

XHd’)(~ Ix-EI)~(~,u) k?(u)+P(%o)l dtdu + 
CO 

t [w” (ir) ; zfp (o( a w (f, u) 
Ix-f0 au d .g-w”’ (ii) x 

0 CO 

01 
x ;*pq- I x-5 I) w (E, u) d t-w’ (U) x 

0 CO 

x ; Hp’g_ a2 w (-5 4 
Ix-51) a3 dg+w(U); f&q* Ix-t0 x 

0 CO 0 co 

x a3ww u=1 

a 2 
dtl I 

u=o 

The relations (8), (9) form a system of resolving equations of the two-level method of 
boundary integral equations applied to the plane problem on the oscillations of a plate of finite 
length placed on a rigid screen and being in contact with an acoustic medium. The simplest 
way of solving the problem consists of a piecewise constant approximation of the function p (x, 
0) to be determined and a numerical inversion of a system of linear algebraic equations of 
order N + 8, where N is the number of segments along the plate, the amplitudes p,, n = 1, 2, 
. . . . N being assumed constant within each of the segments. 

The boundary equations of the first level (Eqs (8) for the oscillations of the plate) are alge- 
braic equations with respect to the generalized boundary forces and displacements as well as 
with respect to the integrals of the given external load q(5) and the reactive acoustic load p (5, 

0). 
Moreover, for each specific way of fixing the ends of the plate, only four boundary cond- 

itions and (or) displacements remain unknown. This makes it possible to solve the system of 
first-level equations analytically and to reduce the problem to the single integral equation (9) 
with the bending parameters on the edges of the plate excluded. Obtaining such an equation in 
the exact analytic form makes it possible: to carry out a detailed asymptotic analysis of the 
interaction between the plate of finite length and the acoustic medium in any excitation band, 
including the principal resonance frequencies (the resonance frequencies of oscillations of the 
plate in vacuum). 

As an example, we consider a freely supported plate. Because the plate is fixed in a sym- 
metric way, its motion under any longitudinal load is the sum of the symmetric and skew- 
symmetric components relative to the centre of the plate. Then the system of equations (8) 
splits into two corresponding second-order systems. 

Substituting the solution of the equations for the symmetric oscillations relative to the centre 
of the plate into (9), we get 
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P(x,o)t+; ;;m+p(u.ow!J1~(~ { I x-t I) x 
0 0 

l 1 k(u)+ X [sin p I u-t I t exp (--cc I u-f I)] dud ,$ -- 
sin/J 0 

+p(u, O)] sin/.Ludu ; ff($‘)(% IJeI) [sinPc;+sin1-((14)1 dE- 
0 

1 
- ; [4 (u) + P (4 WI exp (-cc u) df4 bK.4” ( 

1 + ew (-1.4 o 
$-lx-m x 

x [exp (--cc t) + exp (-cc (l-E))1 d t; = o (10) 

Equation (10) defines the acoustic pressure on the surface of a freely supported plate subject 
to an arbitrary symmetric load. Since the equation describing the skew-symmetric oscillations 
of the plate has the same structure as (lo), we shall restrict ourselves to the asymptotic analysis 
of the latter. 

If the connection between the vibration amplitudes of the plate and the acoustic pressure on 
the surface of the plate is neglected (p(u, 0) is omitted in (lo)), then the equation turns into the 
simple computational formula 

x ; H(p( 
0 

c I x-t I) [exp (-P 8 + exp (-cc (1 --WI d t (11) 

The first integral defines the pressure produced during the oscillations of the considered 
portion of an unbounded plate, while the second and third integrals correspond to boundary 
effect, namely, the contribution of the rotation angles at the ends of the plate and the reaction 
of the support into the total pressure. 

If the constraints of the problem are taken into account, then (in the case of a piecewise- 
constant approximation of the contact pressure) the matrix of the system of algebraic 
equations with respect to the amplitudes p, (n = 1,2,. . . , IV) ceases to be diagonal. 

When (10) is used, each of the off-diagonal terms appearing in this matrix is also the sum of 
two components: the component corresponding to the interaction of the considered portion of 
the unbounded plate with the acoustic medium and the boundary effect integrals 

11 =$ ;p $ ;; p(u,O)&p fg 1x--.$1) x 
0 0 co 
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X [sin/.4F1ttin/_t(l--~)j ci.$ f 
1 

; P 04 0) x 
1 + exp(-ko 0 

X exp(-pu)du _j! f&j’) ( 
0 

X [w C-P 0 + ew G-P (l--U)1 d t I (13) 

These components are proportional to the coefficient K= ~~~/~)(f/~)~ Taking into account 
that v= 0.3, and p,fp= 0.128 for the pair consisting of steel and water, we have ~-0.029 
(Ilii)3’2. Thus, for I/h = 100 we have K= 29q(wl/c). Even though the dependence of (12) and 
(13) on the characteristic parameters I/h and d/c is more complicated (the arguments of the 
integrands afso contain these quantities), such an estimate substantiates the claim that in many 
cases the computation of the contact pressure from the simple formula (11) can lead to large 
errors. 

In the integrals (12) and (13) the components corresponding to the homogeneous and 
inhomogeneous waves present in an infinite plate are specified explicitly, which makes it 
possible to estimate their contribution in each case. 

As the characteristic frequencies providing a scale for dividing the whole excitation band 
into the basic segments we choose the first resonance frequency o, of oscillations of an 
isolated (dry) plate, at which &z = x4 and the so-called ~ompatibi~ty frequency og 171, at which 
the length of the plate is equal to the wavelength in the acoustic medium 

One can therefore distinguish four basic frequency bands 
1. extremely low frequencies 

2. low frequencies 

w l/c < h/Z, Ir<f 

3. intermediate frequencies 

4. high frequencies 

w llc > UP), M > Vh 

In the extremely low frequency band the Hankel function can be replaced by its two-term 
asymptotic forms 
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2i wl ' 
t -1n - t A!_ In IX -5 / 

IT CO n 

(14) 

and the functions representing the fundamental solution of the equation describing the 
oscillations of the plate have the form 

sin /.fr = cc x, exp(-_Ctr)= I-l.cx (15) 

The substitution of (14) and (15) into (11) leads to the exact equality p (x, 0) = 0. This means 
that in the band under consideration the acoustic medium does not interact with the plate as 
the plate oscillates: the load acting on the plate is quasistatic. 

In the low-frequency band the representation (14) can be used as before, and one has to 
keep the quadratic terms of the expansion (15) when describing the oscillations of the plate. 

If Eq. (11) is integrated over the length of the plate, then one can obtain an algebraic 
equation connecting the integrals 

; p (u, 0) du and ; p (u, o) U*~U 

with the analogous integrals 
obtained in the same way on 

0 0 

of the external load. Another equation of the same form can be 
integrating (11) supplemented with x2. 

It follows that the problem can be reduced to solving a system of second-order linear 
equations, the coefficients of which are computed explicitly. The reduction is quite cumber- 
some and will not be presented here. The substitution of the solution of this system into (10) 
turns the latter into an asymptotically exact expression for the acoustic contact pressure on the 
surface of the plate in terms of the external load. In the frequency band in question the 
pressure in the liquid is determined by the integral characteristics of the liquid, namely, the 
resultant force and the second central moment, rather than by the specific way of applying the 
external load. 

The formula can prove to be important in practice, since the frequency band under 
consideration is close to the frequency corresponding to the maximum of the imaginary part of 
the displacement amplitude and, consequently, the maximum of the radiation power, i.e. the 
resonance frequency of oscillations in the liquid. 

As a result of retaining the subsequent terms in the expansion of the fundamental solution 
W(X, 4p, when higher frequencies are considered, the convolution 

; 4P)(%-~r)w (I&.4I)d~ 
0 CO 

turns out to be a transcendental function not only of x and u, but also of the distance Ix-u I. 
This makes it impossible to represent the convolution as the sum of products fi(x)f2(x) and to 
avoid solving the integral equation. 

The asymptotic representations of the fundamental solutions cannot be used in the 
intermediate frequency band. The piecewise approximation of the contact pressure followed 
by the numerical solution of Eq. (10) turns out to be the only way of solving the problem. This 
frequency band may contain (for sufficiently short plates) the first dry resonance. The 
computation using (10) is impossible for P = a because the denominator of the second integral 
term becomes equal to zero. However, the solution of the complete system (8), (9) does not 
present any difficulties at this frequency. 

In the high-frequency band it is possible to use the following asymptotic forms of the Hankel 
function [8] 
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x exp [- yOl Ix-f I- f 1 i (16) 

The convolution of (16) with those terms in (12) and (13) that represent homogeneous 
waves can be expressed in terms of Fresnel integrals. The inhomogeneous wave can be approx- 
imated by using the fact that J@=-1 and 

exp t--P I E-u I) = 1-p I f-u I (17) 

in the frequency band under consideration. In doing so one must restrict the domain of 
integration in (12), (13) to the region jt 15-u I< 1, in which the two-term representation (17) is 
positive. This approach makes it possible to represent the contribution of the inhomogeneous 
wave in terms of Fresnel integrals, similarly as for the homogeneous wave. 

Computations indicated that this simplified model is effective only for sufficiently high 
frequencies, at which is disputable whether or not the displacements and rotary inertia of the 
plate can be neglected. Since in the present paper the fundamental solution (4) is used for the 
plate within the framework of the Kiicbhoff theory, no similar analysis of the oscillations in the 
liquid has been carried out in the high-frequency excitation band. 

Figures l(a-c) show the graphs of the oscillation ~pli~de of the plate in the middle of the span ~(112) 
as a function of the frequency parameter ji for hiI=DLK& 0.01; 0.1 under uniformly distributed load. In 
all the graphs curve 1 corresponds to oscillations in vacuum, and curves 2 and 3 represent the real and 
imaginary parts of the oscillation amplitude in the liquid. Computations carried out in the low-frequency 
band reveal the passage through the fit resonance in the liquid. This resonance is fiied by the change in 
the sign of the real part and the maximum of the imaginary part of the amplitude of oscillations, and also 
by the maximum of radiation power. Increasing the relative thickness of the plate results in extending the 
frequency band in which the magnitude of the imaginary part of the oscillation amplitude (and 
consequently also the radiation into the liquid) is essential. At the same time, the real part of the 

amplitude increases when the resonance is crossed. Moreover, increasing the thickness results in 
extending the frequency baud in which formula (11) for the traditional acoustic computation of the 
contact pressure can be used: the iuverse relation between the oscillation amplitudes of the plate and the 

contact pressure on the surface of the plate not important. 
Curve 4 in Fig. l(b) corresponds to the solution for low-frequency asymptotic forms. The error of such 

a computation remains small even in those caSes when the frequency is much higher than the upper 
bound of the band for which the asymptotic solution is constructed. 

There are no principal differences between the amplitude-frequency characteristics shown in Fig. 1 and 
those corresponding to the oscillations generated by a force concentrated in the middle of the span. 

The values of the frequency parameter (d/c)x103 corresponding to three resonances in the liquid 
obtained with the use of the proposed version of the boundary equation method are 21.6 (19.4 [4], 21.7 
[9]), 202 (192 [4], 204 [9]), 527 (498 [4], 527 [9]). The values in parentheses have been obtained by various 

numerical methods [4,9]. 
The analysis of the structure of the system of equations obtained from (11) as a result of a piecewise- 

constant approx~ation of the contact pressure makes it possible to draw the following conclusions. 

In the low-frequency band neglect of the influence of the edges of the plate leads to substantial errors 
in determining the acoustic contact pressure: if the corrections (12) and (13) are taken into account 
simultaneously, the off-diagonal terms of the matrix are of the order of 105, while the separate 

contributions of either of the corrections are of the order of 10-l. 
At frequencies close to the resonance excitation the effect of the acoustic medium becomes So large 

that the corrections (12) and (13) exceed the magnitude of the diagonal terms. In this case, both 

corrections are equally important, and neither of them can be neglected. 
At intermediate frequencies (above the first dry resonance) the influence of the medium iS Still 

important, but, in principle, it is determined by the correction (12) and the integrals of the boundary effect 

(13) can be omitted. This argument remains valid for higher frequencies too. 
since the above arguments are based on the analysis of the left-hand side of equation (llf, they are 
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independent of the load applied to the plate. 
The change in the distribution of pressure on the surface of the plate being in contact with an acoustic 

medium has been analysed in the two most characteristic cases of excitation of oscillations, namely, a 
concentrated force applied in the middle of the span and a uniformly distributed load. In these cases, two 
versions of the computation have been used: the acoustic approximation using formula (11) and the 

hydroelastic solution corresponding to the precise formulation of the contact problem. 
Figure 2 shows the distribution of the real and imaginary parts A and B (curves 1 and 2) of contact 

pressure amplitudes under a concentrated unit force (cl = 0.266). These curves have the same form both 

in the acoustic and hydroelastic setting, which can be explained by the lack of a connection with the 
problem of determining the vibration amplitudes. Moreover, the concentrated force spreads uniformly 

enough along the plate. 

Figure 3 shows the pressure distribution under the action of a concentrated force at frequency 
p= 1.456, which is close to the first resonance in the liquid. For p = 4.729 similar curves are constructed 
in Fig. 4. The curves in Fig. 5 apply to oscillations generated by a uniformly distributed load of unit 
intensity at the same frequency p = 4.729. In Figs 3-5 the curves A(1) correspond to the real part of the 
pressure in the acoustic approximation, while the curves B(2) correspond to the real part of the pressure 
in the hydroelastic formulation of the problem. The imaginary parts are represented by the curves C(3) 

and D (4), respectively. 
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It can be seen that the acoustic approximation is inadmissible, because it leads to very large errors in 
determining the contact pressure, which is distributed over the surface of the plate in a rather complex 
way, especially in the case of intermediate frequency excitation (ji = 4.729). The real part turns out to be 
oscillatory, while the vaginas part is localized near the edges of the plate (see Fii. 4). Under a u~ifo~ 
external load, the distribution of the contact pressure is more t&form. What is remarkable is that the 
external load is almost completely compensated in the middle part of the plate (curve 2) and the 
imagina~ part of the pressure is focalized in the neigllbourllood of the edges of the plate (curve 4). 
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